]> No Title

abbreviation According again all all all all Alltogether, also always and and and and andapplied are arguments as at at at

be belong

ondition consider

Diederich

a enough E. ex- expression

Oollowing following, For for for for for for for for Fornaess functionsget get get gives gives:

Save have hold

tf In in in in inequality instead is It it

1.

K.

Leviform Leviform

must

(ξˆ,ηˆ)C2ρ=-δ(2-δ).hˆC2(Ω¯r), (ξˆ,ηˆ)C2, (ξˆ,ηˆ)C2. Lσ(p;(ξ, η))2ρww¯=1;ζ=exp(iln|z|2)δ=0, p=(z, 0)Mr. 2ρzk=2δ|z|2;

|pσσσσzΩrσˆ. Ωr : Ωr.) 0<δ<1(ξ, η)0<δ<1.1|z|r1|z|r1|z|r

zC, δRρz=0;(ξˆ, δηˆ)(ξ, η)C2

p=(z, -δexp(iln|z|2))]. ρw=(1-δ)exp(iln|z|2);2ρzw¯=iZexp(iln|z|2);

[)=(z, w)=(z, -δexp(iln|z|2))

+τδhˆ+τ(1-τ)(1-δ)22-δhˆ)|η|2}.σˆ(z, w)=-h˜(|z|2, w)(-ρr(z, w))1/ι

+(2-δ)(-δ2(2-δ)2hˆww¯+2τδ(1-δ)Re(ζhˆw)

+2δ(2-δ)Re[(-δ(2-δ)2hˆzw¯+τ(1-δ)hˆz+τiZζhˆ)ξ

gσ{p;(ξ, η))=δτ-2(2-δ)τ-2(δ2(2-δ)(-(2-δ)hˆzz¯+2τhˆ1|z|2)|ξ|2

+(-δ2(2-δ)2hˆww¯+2τδ(1-δ)Re(ζhˆw)+τδhˆ+τ(1-τ)(1-δ)22-δhˆ)|ηˆ|20

(-22hˆzz¯+2τ|z|2hˆ)|ξ|2+2Re([τζ(hˆz+iZhˆ)ξˆηˆ]+12τ(1-τ)hˆ|ηˆ|20

(-(2-δ)2hˆz5z¯+2τ|z|2hˆ)|ξ|2+2Re([(-δ(2-δ)2hˆww¯+τ(1-δ)hˆz+τiZζhˆ)ξˆηˆ

[lecessary

obviously, of of of on on out

286 [ (15) (17) (17) (18 (19) (They, )

plurisubharmonic points points points: pression proof

r

finc suppose

that that the the the the the the the the the the the the then these This This this this toto to to to turn

vecto vector

we we we we we we we will will with with with with with write written